skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Tzu‐Mao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 3, 2025
  2. Free, publicly-accessible full text available December 3, 2025
  3. Free, publicly-accessible full text available December 3, 2025
  4. We propose a real-time path guiding method, Voxel Path Guiding (VXPG), that significantly improves fitting efficiency under limited sampling budget. Our key idea is to use a spatial irradiance voxel data structure across all shading points to guide the location of path vertices. For each frame, we first populate the voxel data structure with irradiance and geometry information. To sample from the data structure for a shading point, we need to select a voxel with high contribution to that point. To importance sample the voxels while taking visibility into consideration, we adapt techniques from offline many-lights rendering by clustering pairs of shading points and voxels. Finally, we unbiasedly sample within the selected voxel while taking the geometry inside into consideration. Our experiments show that VXPG achieves significantly lower perceptual error compared to other real-time path guiding and virtual point light methods under equal-time comparison. Furthermore, our method does not rely on temporal information, but can be used together with other temporal reuse sampling techniques such as ReSTIR to further improve sampling efficiency. 
    more » « less
  5. Conventional rendering techniques are primarily designed and optimized for single-frame rendering. In practical applications, such as scene editing and animation rendering, users frequently encounter scenes where only a small portion is modified between consecutive frames. In this paper, we develop a novel approach to incremental re-rendering of scenes with dynamic objects, where only a small part of a scene moves from one frame to the next. We formulate the difference (or residual) in the image between two frames as a (correlated) light-transport integral which we call the residual path integral. Efficient numerical solution of this integral then involves (1) devising importance sampling strategies to focus on paths with non-zero residual-transport contributions and (2) choosing appropriate mappings between the native path spaces of the two frames. We introduce a set of path importance sampling strategies that trace from the moving object(s) which are the sources of residual energy. We explore path mapping strategies that generalize those from gradient-domain path tracing to our importance sampling techniques specially for dynamic scenes. Additionally, our formulation can be applied to material editing as a simpler special case. We demonstrate speed-ups over previous correlated sampling of path differences and over rendering the new frame independently. Our formulation brings new insights into the re-rendering problem and paves the way for devising new types of sampling techniques and path mappings with different trade-offs. 
    more » « less
  6. We propose a set of techniques to efficiently importance sample the derivatives of a wide range of Bidirectional Reflectance Distribution Function (BRDF) models. In differentiable rendering, BRDFs are replaced by their differential BRDF counterparts, which are real-valued and can have negative values. This leads to a new source of variance arising from their change in sign. Real-valued functions cannot be perfectly importance sampled by a positive-valued PDF, and the direct application of BRDF sampling leads to high variance. Previous attempts at antithetic sampling only addressed the derivative with the roughness parameter of isotropic microfacet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among other analytic BRDFs. Our method first decomposes the real-valued differential BRDF into a sum of single-signed functions, eliminating variance from a change in sign. Next, we importance sample each of the resulting single-signed functions separately. The first decomposition, positivization, partitions the real-valued function based on its sign, and is effective at variance reduction when applicable. However, it requires analytic knowledge of the roots of the differential BRDF, and for it to be analytically integrable too. Our key insight is that the single-signed functions can have overlapping support, which significantly broadens the ways we can decompose a real-valued function. Our product and mixture decompositions exploit this property, and they allow us to support several BRDF derivatives that positivization could not handle. For a wide variety of BRDF derivatives, our method significantly reduces the variance (up to 58× in some cases) at equal computation cost and enables better recovery of spatially varying textures through gradient-descent-based inverse rendering. 
    more » « less
  7. In offline reinforcement learning (RL), updating the value function with the discrete-time Bellman Equation often encounters challenges due to the limited scope of available data. This limitation stems from the Bellman Equation, which cannot accurately predict the value of unvisited states. To address this issue, we have introduced an innovative solution that bridges the continuousand discrete-time RL methods, capitalizing on their advantages. Our method uses a discrete-time RL algorithm to derive the value function from a dataset while ensuring that the function’s first derivative aligns with the local characteristics of states and actions, as defined by the HamiltonJacobi-Bellman equation in continuous RL. We provide practical algorithms for both deterministic policy gradient methods and stochastic policy gradient methods. Experiments on the D4RL dataset show that incorporating the first-order information significantly improves policy performance for offline RL problems. 
    more » « less
  8. Physics-based differentiable rendering is becoming increasingly crucial for tasks in inverse rendering and machine learning pipelines. To address discontinuities caused by geometric boundaries and occlusion, two classes of methods have been proposed: 1) the edge-sampling methods that directly sample light paths at the scene discontinuity boundaries, which require nontrivial data structures and precomputation to select the edges, and 2) the reparameterization methods that avoid discontinuity sampling but are currently limited to hemispherical integrals and unidirectional path tracing. We introduce a new mathematical formulation that enjoys the benefits of both classes of methods. Unlike previous reparameterization work that focused on hemispherical integral, we derive the reparameterization in the path space. As a result, to estimate derivatives using our formulation, we can apply advanced Monte Carlo rendering methods, such as bidirectional path tracing, while avoiding explicit sampling of discontinuity boundaries. We show differentiable rendering and inverse rendering results to demonstrate the effectiveness of our method. 
    more » « less
  9. Computations in physical simulation, computer graphics, and probabilistic inference often require the differentiation of discontinuous processes due to contact, occlusion, and changes at a point in time. Popular differentiable programming languages, such as PyTorch and JAX, ignore discontinuities during differentiation. This is incorrect forparametric discontinuities—conditionals containing at least one real-valued parameter and at least one variable of integration. We introduce Potto, the first differentiable first-order programming language to soundly differentiate parametric discontinuities. We present a denotational semantics for programs and program derivatives and show the two accord. We describe the implementation of Potto, which enables separate compilation of programs. Our prototype implementation overcomes previous compile-time bottlenecks achieving an 88.1x and 441.2x speed up in compile time and a 2.5x and 7.9x speed up in runtime, respectively, on two increasingly large image stylization benchmarks. We showcase Potto by implementing a prototype differentiable renderer with separately compiled shaders. 
    more » « less